Okhttp源码分析--基本使用流程分析

软件发布|下载排行|最新软件

当前位置:首页IT学院IT技术

Okhttp源码分析--基本使用流程分析

Robin+   2019-12-24 我要评论

Okhttp源码分析--基本使用流程分析

一、 使用

同步请求
    OkHttpClient okHttpClient=new OkHttpClient();
    Request request=new Request.Builder()
        .get()
        .url("www.baidu.com")
        .build();
    Call call =okHttpClient.newCall(request).execute();
异步请求
  OkHttpClient okHttpClient=new OkHttpClient();
    Request request=new Request.Builder()
        .get()
        .url("www.baidu.com")
        .build();
    Call call=okHttpClient.newCall(request).enqueue(new Callback() {
      @Override public void onFailure(Call call, IOException e) {
        Log.i(TAG, "onFailure: ");
      }

      @Override public void onResponse(Call call, Response response) throws IOException {
        Log.i(TAG, "onResponse: ");
      }
    });

可以看出不管是同步还是异步请求,使用okhttp大致分为3个步骤:
1. 创建okhttpclient
2. 创建请求的request
3. 通过client拿到call、发送请求

注:okhttpclient和request的创建均可采用构造者模式,在构造过程中可根据自己的实际需求设置相应的参数,如可在okhttpclient构造时添加自定义拦截器,在request构造过程中设置连接超时时间等。

二、 源码分析

首先看下OkhttpClient这个类,使用步骤的第一步就是构造OkhttpClient对象。

先贴下官方对OkhttpClient的定义

 *Factory for {@linkplain Call calls}, which can be used to send HTTP requests and read their
 * responses.
 * OkHttpClients should be shared
 
 * OkHttp performs best when you create a single {@code OkHttpClient} instance and reuse it for
 * all of your HTTP calls. This is because each client holds its own connection pool and thread
 * pools. Reusing connections and threads reduces latency and saves memory. Conversely, creating a
 * client for each request wastes resources on idle pools.

OkhttpClient是用于发送请求和读取响应的,官方建议创建一个单例的OkHttpClient,并且所有的http请求都复用它。因为每个OkHttpClient都有自己的connection pool and thread pool。复用connection pool and thread pool可以节约内存,相反如果为每个请求都创建一个OkHttpClient那么会浪费idle pools中的资源。

创建OkHttpClient有两种方式:
1、通过构造函数
2、通过Builder()创建一个client并自定义设置

同时还提供了一个newBuilder()来自定义client,它跟共享的client拥有相同的connection pool, thread pools, and configuration。我们可以用该方法来获取特定设置的client。

OkHttpClient提供无参构造函数,由代码可知它在内部调用OkHttpClient的有参构造函数
,在有参构造函数里对OkHttpClient主要属性做了初始化赋值。

  public OkHttpClient() {
    this(new Builder());
  }
  
  OkHttpClient(Builder builder) {
    this.dispatcher = builder.dispatcher;
    this.proxy = builder.proxy;
    this.protocols = builder.protocols;
    this.connectionSpecs = builder.connectionSpecs;
    this.interceptors = Util.immutableList(builder.interceptors);
    this.networkInterceptors = Util.immutableList(builder.networkInterceptors);
    this.eventListenerFactory = builder.eventListenerFactory;
    this.proxySelector = builder.proxySelector;
    this.cookieJar = builder.cookieJar;
    this.cache = builder.cache;
    this.internalCache = builder.internalCache;
    this.socketFactory = builder.socketFactory;
    ...//省略N行
  }

下面贴下OkHttpClient主要的属性

public class OkHttpClient{
    final Dispatcher dispatcher;//分发器
    final @Nullable Proxy proxy;//代理
    final List<Protocol> protocols;//协议
    final List<ConnectionSpec> connectionSpecs;//传输层版本和连接协议
    final List<Interceptor> interceptors;//拦截器 (okhttp核心机制)
    final List<Interceptor> networkInterceptors;//网络拦截器
    final EventListener.Factory eventListenerFactory;
    final ProxySelector proxySelector;//代理选择器
    final CookieJar cookieJar;//cookie
    final @Nullable
    Cache cache;//cache 缓存
    final @Nullable
    InternalCache internalCache;//内部缓存
    final SocketFactory socketFactory;//socket 工厂
    final @Nullable
    SSLSocketFactory sslSocketFactory;//安全套层socket工厂 用于https
    final @Nullable
    CertificateChainCleaner certificateChainCleaner;//验证确认响应书,适用HTTPS 请求连接的主机名
    final HostnameVerifier hostnameVerifier;//主机名字确认
    final CertificatePinner certificatePinner;//证书链
    final Authenticator proxyAuthenticator;//代理身份验证
    final Authenticator authenticator;//本地省份验证
    final ConnectionPool connectionPool;//链接池 复用连接
    final Dns dns; //域名
    final boolean followSslRedirects;//安全套接层重定向
    final boolean followRedirects;//本地重定向
    final boolean retryOnConnectionFailure;//连接失败是否重试
    final int connectTimeout;//连接超时时间
    final int readTimeout;//读取超时时间
    final int writeTimeout;//写入超时时间
}

通过浏览源码我们可以发现OkHttpClient采用了构造者设计模式,这样简化参数设置,降低使用成本。比如我们前面简单使用的例子

OkHttpClient类还有一个需要了解的函数就是newCall,因为OkHttpClient实现Call.Factory接口所以覆写了newCall方法,在方法内部返回的是一个RealCall实例。

/**
   * Prepares the {@code request} to be executed at some point in the future.
   */
  @Override public Call newCall(Request request) {
    return RealCall.newRealCall(this, request, false /* for web socket */);
  }

OkHttpClient构造好了之后接下来就是创建request,request就是我们要发送的请求。它也是通过builder模式构造的。下面贴下Request的主要属性以及其构造函数。

public final class Request {
  final HttpUrl url;//请求url地址
  final String method;//请求方式
  final Headers headers;//请求头
  final @Nullable RequestBody body;//请求body
  final Map<Class<?>, Object> tags;//请求tags用来标记一类请求如 设置之后可以通过tags取消拥有该tag的请求

  Request(Builder builder) {
    this.url = builder.url;
    this.method = builder.method;
    this.headers = builder.headers.build();
    this.body = builder.body;
    this.tags = Util.immutableMap(builder.tags);
  }
  ...
}

通过Request我们可以得到我们想要的请求,然后下一步就是获取call实例然后发送请求。
在介绍OkHttpClient类的时候我们已经说过call对象是通过OkHttpClient的newCall方法获得的实际返回的是RealCall对象,也就是说真正发送的请求是RealCall,那么我们来看下RealCall这个类

final class RealCall implements Call {
  final OkHttpClient client; //realcall持有client
  private Transmitter transmitter;//暂时不知道其作用

  /** The application's original request unadulterated by redirects or auth headers. */
  final Request originalRequest;//原始请求
  final boolean forWebSocket;//

  // Guarded by this.
  private boolean executed;//请求是否执行标志位
  
  private RealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) { //构造函数
    this.client = client;
    this.originalRequest = originalRequest;
    this.forWebSocket = forWebSocket;
  }

  static RealCall newRealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) {//okhttpclient即通过该函数返回call
    // Safely publish the Call instance to the EventListener.
    RealCall call = new RealCall(client, originalRequest, forWebSocket);
    call.transmitter = new Transmitter(client, call);
    return call;
  }

RealCall实现的Call接口,其newCall函数内部通过RealCall的构造函数实例化一个call然后返回该call。
最后就是发送请求了,有两种方式:同步和异步。我们先看下同步请求的方式,同步请求是通过execute发送的

 @Override public Response execute() throws IOException {
    synchronized (this) {//1
      if (executed) throw new IllegalStateException("Already Executed");
      executed = true;
    }
    transmitter.timeoutEnter();
    transmitter.callStart();
    try {
      client.dispatcher().executed(this);//2
      return getResponseWithInterceptorChain();//3
    } finally {
      client.dispatcher().finished(this);//4
    }
  }

execute首先(注释1处)会synchronized来检查executed值从而确保每个请求只能执行一次。随后调用dispatcher的executed(注释2处)。
来看下Dispatcher这个类

public final class Dispatcher {
  private int maxRequests = 64;//最大请求数
  private int maxRequestsPerHost = 5;//每个host的最大请求数
  private @Nullable Runnable idleCallback;//请求队列空闲回调

  /** Executes calls. Created lazily. */
  private @Nullable ExecutorService executorService; //执行请求的线程池

  /** Ready async calls in the order they'll be run. */
  private final Deque<AsyncCall> readyAsyncCalls = new ArrayDeque<>();//异步准备就绪请求队列

  /** Running asynchronous(异步) calls. Includes canceled calls that haven't finished yet. */
  private final Deque<AsyncCall> runningAsyncCalls = new ArrayDeque<>();//异步执行请求队列

  /** Running synchronous calls. Includes canceled calls that haven't finished yet. */
  private final Deque<RealCall> runningSyncCalls = new ArrayDeque<>();//同步请求队列

可以看出okhttp虽然支持并发请求但是有最大并发请求数的限制。而且okhttp针对不同的请求方式提供了不同的请求队列。dispatcher这个类主要的作用就是根据request的请求方式以及根据当前client的执行情况把新创建的call请求分发至不同的队列中去执行。

了解了dispatcher类作用我们看下它的exectued函数

 synchronized void executed(RealCall call) {
    runningSyncCalls.add(call);
  }

很简单它只是把传入的call对象添加到同步请求队列中(runningSyncCalls)。那请求具体是如何发送的呢 我们接着看RealCall的exectued函数。
在注释3处通过调用getResponseWithInterceptorChain()获取respone并返回该respone。

 Response getResponseWithInterceptorChain() throws IOException {
    // Build a full stack of interceptors.
    List<Interceptor> interceptors = new ArrayList<>();
    interceptors.addAll(client.interceptors());//如果在client中设置了自定义interceptor那么会放到interceptors中
    interceptors.add(new RetryAndFollowUpInterceptor(client));//添加重试与重定向拦截器
    interceptors.add(new BridgeInterceptor(client.cookieJar()));//添加桥接拦截器
    interceptors.add(new CacheInterceptor(client.internalCache()));//添加缓存拦截器
    interceptors.add(new ConnectInterceptor(client));
    if (!forWebSocket) {
      interceptors.addAll(client.networkInterceptors());
    }
    interceptors.add(new CallServerInterceptor(forWebSocket));//添加CallServer拦截器
    Interceptor.Chain chain = new RealInterceptorChain(interceptors, transmitter, null, 0,
        originalRequest, this, client.connectTimeoutMillis(),
        client.readTimeoutMillis(), client.writeTimeoutMillis());//
        创建RealInterceptorChain实例,把interceptors传入

    boolean calledNoMoreExchanges = false;
    try {
      Response response = chain.proceed(originalRequest);//通过proceed链式获取respone
      if (transmitter.isCanceled()) {
        closeQuietly(response);
        throw new IOException("Canceled");
      }
      return response;//返回respone
    } catch (IOException e) {
      calledNoMoreExchanges = true;
      throw transmitter.noMoreExchanges(e);
    } finally {
      if (!calledNoMoreExchanges) {
        transmitter.noMoreExchanges(null);
      }
    }
  }

getResponseWithInterceptorChain首先会把自定义以及okhttp定义的拦截器加到interceptors的list中,然后构造RealInterceptorChain拦截器链,调用chain.proceed链式调用各个拦截器并最终获得respone。

Interceptor可以说是okhttp的核心机制之一,我们一起来看下

public interface Interceptor {
  Response intercept(Chain chain) throws IOException;

  interface Chain {
    Request request();

    Response proceed(Request request) throws IOException;

    /**
     * Returns the connection the request will be executed on. This is only available in the chains
     * of network interceptors; for application interceptors this is always null.
     */
    @Nullable Connection connection();

    Call call();

    int connectTimeoutMillis();

    Chain withConnectTimeout(int timeout, TimeUnit unit);

    int readTimeoutMillis();

    Chain withReadTimeout(int timeout, TimeUnit unit);

    int writeTimeoutMillis();

    Chain withWriteTimeout(int timeout, TimeUnit unit);
  }
}

它是okhttp定义的一个接口类,并且okhttp提供了5个实现类,他们就是getResponseWithInterceptorChain()中添加到interceptors中的5个Interceptor,他们作用各不相同,这个以后会单独分析。除此之外我们还可以自定义自己的拦截器。
了解了拦截器的概念之后我们看下RealInterceptorChain及其proceed函数

public final class RealInterceptorChain implements Interceptor.Chain {
  private final List<Interceptor> interceptors;//拦截器list
  private final Transmitter transmitter;
  private final @Nullable Exchange exchange;
  private final int index;
  private final Request request;//请求
  private final Call call;
  private final int connectTimeout;
  private final int readTimeout;
  private final int writeTimeout;
  private int calls;

  public RealInterceptorChain(List<Interceptor> interceptors, Transmitter transmitter,
      @Nullable Exchange exchange, int index, Request request, Call call,
      int connectTimeout, int readTimeout, int writeTimeout) {//构造函数
    this.interceptors = interceptors;
    this.transmitter = transmitter;
    this.exchange = exchange;
    this.index = index;
    this.request = request;
    this.call = call;
    this.connectTimeout = connectTimeout;
    this.readTimeout = readTimeout;
    this.writeTimeout = writeTimeout;
  }
@Override public Response proceed(Request request) throws IOException {//proceed方法实际调用同名的proceed方法
    return proceed(request, transmitter, exchange);
  }

  public Response proceed(Request request, Transmitter transmitter, @Nullable Exchange exchange)
      throws IOException {//1
    if (index >= interceptors.size()) throw new AssertionError();

    calls++;

    // If we already have a stream, confirm that the incoming request will use it.
    if (this.exchange != null && !this.exchange.connection().supportsUrl(request.url())) {
      throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
          + " must retain the same host and port");
    }

    // If we already have a stream, confirm that this is the only call to chain.proceed().
    if (this.exchange != null && calls > 1) {
      throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
          + " must call proceed() exactly once");
    }

    // 2
    //Call the next interceptor in the chain.
    RealInterceptorChain next = new RealInterceptorChain(interceptors, transmitter, exchange,
        index + 1, request, call, connectTimeout, readTimeout, writeTimeout);
    Interceptor interceptor = interceptors.get(index);
    Response response = interceptor.intercept(next);

    // Confirm that the next interceptor made its required call to chain.proceed().
    if (exchange != null && index + 1 < interceptors.size() && next.calls != 1) {
      throw new IllegalStateException("network interceptor " + interceptor
          + " must call proceed() exactly once");
    }

    // Confirm that the intercepted response isn't null.
    if (response == null) {
      throw new NullPointerException("interceptor " + interceptor + " returned null");
    }

    if (response.body() == null) {
      throw new IllegalStateException(
          "interceptor " + interceptor + " returned a response with no body");
    }

    return response;
  }

RealInterceptorChain作为拦截器链它持有整个应用的拦截器以及网络拦截器。该类的proceed方法实际是调用了该类重载的proceed方法(注释1处)。在注释2处,调用拦截器链中的下一个拦截器。在这里new了一个RealInterceptorChain,注意这里传入的index加了1(getResponseWithInterceptorChain传入的index为0),这代表拦截器链中的下一个拦截器的index,之后根据index获取当前的拦截器并调用其intercept方法。intercept是接口Interceptor的一个方法,由具体的实现类实现,此处我们以RetryAndFollowUpInterceptor为例看下intercept方法中做了什么事情。

public final class RetryAndFollowUpInterceptor implements Interceptor {
  private final OkHttpClient client;//持有的client
@Override public Response intercept(Chain chain) throws IOException {
    Request request = chain.request();//获取传入的chain的request 此处的request是next的request
    RealInterceptorChain realChain = (RealInterceptorChain) chain;
    Transmitter transmitter = realChain.transmitter();

    int followUpCount = 0;
    Response priorResponse = null;
    while (true) {
      transmitter.prepareToConnect(request);

      if (transmitter.isCanceled()) {
        throw new IOException("Canceled");
      }

      Response response;
      boolean success = false;
      try {
        response = realChain.proceed(request, transmitter, null);//调用next的proceed方法
        success = true;
      } catch (RouteException e) {
        // The attempt to connect via a route failed. The request will not have been sent.
        if (!recover(e.getLastConnectException(), transmitter, false, request)) {
          throw e.getFirstConnectException();
        }
        continue;
      } catch (IOException e) {
        // An attempt to communicate with a server failed. The request may have been sent.
        boolean requestSendStarted = !(e instanceof ConnectionShutdownException);
        if (!recover(e, transmitter, requestSendStarted, request)) throw e;
        continue;
      } finally {
        // The network call threw an exception. Release any resources.
        if (!success) {
          transmitter.exchangeDoneDueToException();
        }
      }

      // Attach the prior response if it exists. Such responses never have a body.
      if (priorResponse != null) {
        response = response.newBuilder()
            .priorResponse(priorResponse.newBuilder()
                    .body(null)
                    .build())
            .build();
      }

      Exchange exchange = Internal.instance.exchange(response);
      Route route = exchange != null ? exchange.connection().route() : null;
      Request followUp = followUpRequest(response, route);//处理请求重定向

      if (followUp == null) {
        if (exchange != null && exchange.isDuplex()) {
          transmitter.timeoutEarlyExit();
        }
        return response;//直到没有重定向之后返回respone
      }

      RequestBody followUpBody = followUp.body();
      if (followUpBody != null && followUpBody.isOneShot()) {
        return response;
      }

      closeQuietly(response.body());
      if (transmitter.hasExchange()) {
        exchange.detachWithViolence();
      }

      if (++followUpCount > MAX_FOLLOW_UPS) {
        throw new ProtocolException("Too many follow-up requests: " + followUpCount);
      }

      request = followUp;
      priorResponse = response;
    }
  }
}

我们看到在RetryAndFollowUpInterceptor的intercept方法中会调用传入的next(即拦截器链中当前拦截器的下一个拦截器)的proceed方法,这样就可以链式的依次调用chain中所有拦截器,每个拦截器都执行自己的任务最终返回respone。该respone通过RealCall的getResponseWithInterceptorChain返回到execute方法并最终变成我们获得的respone。至此同步请求获得了respone,最后的操作就是在RealCall的execute方法中调用finished方法

 @Override public Response execute() throws IOException {
    synchronized (this) {
      if (executed) throw new IllegalStateException("Already Executed");
      executed = true;
    }
    transmitter.timeoutEnter();
    transmitter.callStart();
    try {
      client.dispatcher().executed(this);
      return getResponseWithInterceptorChain();
    } finally {
      client.dispatcher().finished(this);//拿到respone后调用finish方法
    }
  }

该方法是dispatcher提供的

 void finished(RealCall call) {
    finished(runningSyncCalls, call);
  }

  private <T> void finished(Deque<T> calls, T call) {
    Runnable idleCallback;
    synchronized (this) {
      if (!calls.remove(call)) throw new AssertionError("Call wasn't in-flight!");//从同步执行队列移除该call 移除失败会抛出异常
      idleCallback = this.idleCallback;
    }

    boolean isRunning = promoteAndExecute();//1

    if (!isRunning && idleCallback != null) {
      idleCallback.run();//如果isRuning为false并且idleCallback不为空就执行idleCallback。
    }
  }

我们看下promoteAndExecute()这个方法

private boolean promoteAndExecute() {
  assert (!Thread.holdsLock(this));

  List<AsyncCall> executableCalls = new ArrayList<>();
  boolean isRunning;
  synchronized (this) {
    for (Iterator<AsyncCall> i = readyAsyncCalls.iterator(); i.hasNext(); ) {//1
      AsyncCall asyncCall = i.next();

      if (runningAsyncCalls.size() >= maxRequests) break; // Max capacity.
      if (asyncCall.callsPerHost().get() >= maxRequestsPerHost) continue; // Host max capacity.

      i.remove();
      asyncCall.callsPerHost().incrementAndGet();
      executableCalls.add(asyncCall);
      runningAsyncCalls.add(asyncCall);
    }
    isRunning = runningCallsCount() > 0;
  }

  for (int i = 0, size = executableCalls.size(); i < size; i++) {//2
    AsyncCall asyncCall = executableCalls.get(i);
    asyncCall.executeOn(executorService());
  }

  return isRunning;
}

该方法主要是两个for循环,首先第一个for循环(注释1处)遍历准备就绪队列如果不为空且满足一定条件则添加到executableCalls中,但是在同步请求时准备就绪队列(readyAsyncCalls)为空,executableCalls也为空,所以两个for循环都不会进入(实际上该方法是为异步请求准备的)函数最终返回false。

此时回到dispatcher的finish()方法,它会判断promoteAndExecute()返回值和idleCallback是否为空,如果isRuning为false并且idleCallback不为空就执行idleCallback,否则就什么都不做。

至此同步请求流程分析完毕。

异步请求

异步请求跟同步请求不同的地方就是它是调用RealCall的enqueue方法

@Override public void enqueue(Callback responseCallback) {
    synchronized (this) {
      if (executed) throw new IllegalStateException("Already Executed");
      executed = true;
    }
    transmitter.callStart();
    client.dispatcher().enqueue(new AsyncCall(responseCallback));//执行dispatcher的enqueue
  }

在方法内部调用dispatcher的enqueue并传入AsyncCall参数,我们先来看下AsyncCall再分析异步请求流程

final class AsyncCall extends NamedRunnable {
  private final Callback responseCallback;
  private volatile AtomicInteger callsPerHost = new AtomicInteger(0);

  AsyncCall(Callback responseCallback) {
    super("OkHttp %s", redactedUrl());
    this.responseCallback = responseCallback;
  }

}

AsyncCall是RealCall的一个内部类它继承自NamedRunnable

public abstract class NamedRunnable implements Runnable {
  protected final String name;

  public NamedRunnable(String format, Object... args) {
    this.name = Util.format(format, args);
  }

  @Override public final void run() {
    String oldName = Thread.currentThread().getName();
    Thread.currentThread().setName(name);
    try {
      execute();
    } finally {
      Thread.currentThread().setName(oldName);
    }
  }

  protected abstract void execute();
}

NamedRunnable其实就是一个实现Runnable的线程类。在它的run方法中调用了其提供的抽象函数execute(),execute()的实现是在AsyncCall

@Override protected void execute() {
  boolean signalledCallback = false;
  transmitter.timeoutEnter();
  try {
    Response response = getResponseWithInterceptorChain();
    signalledCallback = true;
    responseCallback.onResponse(RealCall.this, response);
  } catch (IOException e) {
    if (signalledCallback) {
      // Do not signal the callback twice!
      Platform.get().log(INFO, "Callback failure for " + toLoggableString(), e);
    } else {
      responseCallback.onFailure(RealCall.this, e);
    }
  } finally {
    client.dispatcher().finished(this);
  }
}

可以看到这跟同步请求的过程是一样的先通过getResponseWithInterceptorChain()链式调用拦截链去获得resopne,之后是通过callback回调结果,最后调用finished。
分析AsyncCall之后我们可以大致猜测出异步请求的实现是通过线程去执行Call,请求的执行过程跟同步请求是一样的只不过最后是通过callbcak返回。

好了,我们来看下具体的异步请求流程,之前说到dispatcher的enqueue方法,那我们来看下这个方法都做了什么

 void enqueue(AsyncCall call) {
    synchronized (this) {
      readyAsyncCalls.add(call);//添加到异步准备就绪队列

      // Mutate the AsyncCall so that it shares the AtomicInteger of an existing running call to
      // the same host.
      if (!call.get().forWebSocket) {
        AsyncCall existingCall = findExistingCallWithHost(call.host());
        if (existingCall != null) call.reuseCallsPerHostFrom(existingCall);
      }
    }
    promoteAndExecute();//执行请求
  }

很简单在方法内部先是把call添加到异步准备就绪队列然后调用了 promoteAndExecute,promoteAndExecute我们之前在同步请求分析过它内部主要是两个for循环,在同步请求时这两个for循环都是不满足条件的,那我们看下异步请求时

private boolean promoteAndExecute() {
    assert (!Thread.holdsLock(this));

    List<AsyncCall> executableCalls = new ArrayList<>();
    boolean isRunning;
    synchronized (this) {
      for (Iterator<AsyncCall> i = readyAsyncCalls.iterator(); i.hasNext(); ) {//把异步准备就绪对列中的call取出
        AsyncCall asyncCall = i.next();
        //判断最大请求数以及每个host请求数是否符合要求
        if (runningAsyncCalls.size() >= maxRequests) break; // Max capacity.
        if (asyncCall.callsPerHost().get() >= maxRequestsPerHost) continue; // Host max capacity.
        //移除准备就绪队列中的call
        i.remove();
        asyncCall.callsPerHost().incrementAndGet();//记录该call的host的请求数
        executableCalls.add(asyncCall);//添加到executableCalls
        runningAsyncCalls.add(asyncCall);//添加到异步执行队列
      }
      isRunning = runningCallsCount() > 0;
    }

    for (int i = 0, size = executableCalls.size(); i < size; i++) {//executableCalls不为空,取出执行
      AsyncCall asyncCall = executableCalls.get(i);
      asyncCall.executeOn(executorService());//call实际执行
    }

    return isRunning;
  }

因为在之前已经把call添加到了异步准备就绪队列(readyAsyncCalls
),所以第一个for是可以进入的,在第一个for循环内部首先会先判断当前准备就绪队列中的call是否达到了最大请求数即最大并发请求数,然后判断单个host是否达到最大请求数。之后就是把当前的call添加到executableCalls和runningAsyncCalls两个队列中。之后进入第二个for循环,在这个for循环中依次其中取出call对象并调用其executeO函数。
注意在execute函数中传入的executorService其实是一个线程池

public synchronized ExecutorService executorService() {
  if (executorService == null) {
    executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS,
        new SynchronousQueue<>(), Util.threadFactory("OkHttp Dispatcher", false));
  }
  return executorService;
}

可以看出executorService是一个仅有非核心线程,且非核心线程数无限大的线程池。
好了简单了解了executorService我们返回来接着看下executeOn,
在executeOn中调用了executorService.execute(this),executeOn是AsyncCall内部的函数而AsyncCall是一个线程类所以该操作会执行线程的run方法,这里具体来说就是NamedRunnable的run方法,我们知道在这个run方法中调用了execute()方法,execute()我们上面分析过了跟同步请求过程一样链式调用拦截器最终获取respone。

  void executeOn(ExecutorService executorService) {
      assert (!Thread.holdsLock(client.dispatcher()));
      boolean success = false;
      try {
        executorService.execute(this);//实际执行call
        success = true;
      } catch (RejectedExecutionException e) {
        InterruptedIOException ioException = new InterruptedIOException("executor rejected");
        ioException.initCause(e);
        transmitter.noMoreExchanges(ioException);
        responseCallback.onFailure(RealCall.this, ioException);
      } finally {
        if (!success) {
          client.dispatcher().finished(this); // This call is no longer running!
        }
      }
    }

至此异步请求流程也分析完了。

最后我们来总结下Okhttp的请求流程:
首先不管同步还是异步都会先初始化一个OkhttpClient之后是Request、Call。
不同之处在于同步请求把请求添加到runningSyncCalls
然后直接调用execute,链式调用拦截器获取respone并返回。异步请求则是把请求先添加到readyAsyncCalls,之后执行的时候再把其添加到runningAsyncCalls并且把请求放到子线程中取执行,即链式调用拦截器获取respone是在子线程中完成的。
还有就是不管是同步还是异步请求完成后都会把Call移除。
以上只是Okhttp最简单的流程分析,其实Okhttp还有很多值得我们学习的地方,之后我会继续更新相关内容来更深入了解Okhttp。

Copyright 2022 版权所有 软件发布 访问手机版

声明:所有软件和文章来自软件开发商或者作者 如有异议 请与本站联系 联系我们