Python目标检测

软件发布|下载排行|最新软件

当前位置:首页IT学院IT技术

Python目标检测

Together_CZ   2022-06-05 我要评论

当下基本所有的目标检测类的任务都会选择基于深度学习的方式,诸如:YOLO、SSD、RCNN等等,这一领域不乏有很多出色的模型,而且还在持续地推陈出新,模型的迭代速度很快,其实最早实现检测的时候还是基于机器学习去做的,HOG+SVM就是非常经典有效的一套框架,今天这里并不是说要做出怎样的效果,而是基于HOG+SVM来实践机器学习检测的流程。

这里为了方便处理,我是从网上找的一个数据集,主要是行人检测方向的,当然了这个用车辆检测、火焰检测等等的数据集都是可以的,本质都是一样的。

首先看下数据集,数据集主要分为两个类别,一个类别是包含行人的,另一个类别是不包含行人的,首先看下不包含行人的:

接下来看下包含行人的:

看到这里,其实就不难理解,这里的SVM扮演的主要作用就是二分类模型了。

接下来我们需要对原始图像的数据集进行特征提取计算,这里是基于HOG的方式实现的,可以自行实现HOG特征向量提取方法,也可以直接使用skimage提供的HOG提取器来一步实现,这里为了方便,我是直接使用的skimage提供的HOG方法,核心实现如下:

def img2Feature(dataDir="data/",save_path="feature.json"):
    """
    特征提取计算
    """
    feature=[]
    for one_label in os.listdir(dataDir):
        print("one_label: ", one_label)
        oneDir=dataDir+one_label+'/'
        for one_pic in os.listdir(oneDir):
            one_path=oneDir+one_pic
            print("one_path: ", one_path)
            #加载图像
            one_img = imread(one_path, as_gray=True)
            one_vec = hog(one_img, orientations=orientations, pixels_per_cell=pixels_per_cell, cells_per_block=cells_per_block, 
                        visualize=visualize, block_norm=normalize)
            one_vec=one_vec.tolist()
            one_vec.append(one_label)
            feature.append(one_vec)
    print("feature_length: ", len(feature))
    with open(save_path,"w") as f:
        f.write(json.dumps(feature))

HOG提取得到的向量维度很大,这里就不进行展示了。

之后就可以训练模型了,核心实现如下:

resDir = "results/"
if not os.path.exists(resDir):
    os.makedirs(resDir)
data = "feature.json"
dict1 = DTModel(data=data, rationum=0.25, model_path=resDir + "DT.model")
dict2 = RFModel(data=data, rationum=0.25, model_path=resDir + "RF.model")
dict3 = SVMModel(data=data, rationum=0.25, model_path=resDir + "SVM.model")
res_dict = {}
res_dict["DT"], res_dict["RF"], res_dict["SVM"] = dict1, dict2, dict3
with open(resDir + "res_dict.json", "w") as f:
    f.write(json.dumps(res_dict))
comparePloter(dict1, dict2, dict3, save_path=resDir + "comparePloter.jpg")

这里,我是同时使用了决策树DT、随机森林RF、支持向量机SVM三种模型来进行分类和对比可视化,对比结果如下:

{
	"DT": {
		"precision": 0.7573482282561567,
		"recall": 0.7597846737437716,
		"F1": 0.7584933696379963,
		"accuracy": 0.7584933696379963
	},
	"RF": {
		"precision": 0.9156160607479066,
		"recall": 0.8801773928046967,
		"F1": 0.893107332148193,
		"accuracy": 0.893107332148193
	},
	"SVM": {
		"precision": 0.9281402443868877,
		"recall": 0.9272928963585789,
		"F1": 0.9277128372009962,
		"accuracy": 0.9277128372009962
	}
}

为了直观展示,这里对三种模型的性能进行可视化展示,如下所示:

        接下来我们对训练好的模型调用进行测试,查看具体的效果,随机选取了几张网上的图像,测试结果如下:

整体看下来,效果表现一般,不过这个也只是主要以实践流程为目的,并不是实际做项目的,而且各个环节都有优化提升的空间,模型的参数也都没有调过。

Copyright 2022 版权所有 软件发布 访问手机版

声明:所有软件和文章来自软件开发商或者作者 如有异议 请与本站联系 联系我们