MySQL分布式锁

软件发布|下载排行|最新软件

当前位置:首页IT学院IT技术

MySQL分布式锁

俗世游子​​​​​​​   2022-09-28 我要评论

基于MySQL分布式锁实现原理及代码

工欲善其事必先利其器,在基于MySQL实现分布式锁之前,我们要先了解一点MySQL锁自身的相关内容

MySQL锁

我们知道:锁是计算机协调多个进程或者线程并发访问同一资源的机制,而在数据库中,除了传统的机器资源的争用之外,存储下来的数据也属于供用户共享的资源,所以如何保证数据并发的一致性,有效性是每个数据库必须解决的问题。

除此之外,锁冲突也是影响数据库并发性能的主要因素,所以锁对于数据库而言就显得非常重要,也非常复杂。

存储引擎是MySQL中非常重要的底层组件,主要用来处理不同类型的SQL操作,其中包括创建,读取,删除和修改操作。在MySQL中提供了不同类型的存储引擎,根据其不同的特性提供了不同的存储机制,索引和锁功能。

根据show engines;能够列出MySQL下支持的存储引擎

如果没有特殊指定,那么在MySQL8.0中会设置InnoDB为默认的存储引擎

在实际工作中,根据需求选择最多的两种存储引擎分别为:

  • InnoDB
  • MyISAM

所以我们主要针对这两种类型来介绍MySQL的锁

InnoDB

InnoDB支持多粒度锁定,可以支持行锁,也可以支持表锁。如果没有升级锁粒度,那么默认情况下是以行锁来设计的。

关于行锁和表锁的介绍:

  • 行锁对指定数据进行加锁,锁定粒度最小,开销大,加锁慢,容易出现死锁问题,出现锁冲突的概率最小,并发性最高
  • 表锁对整个表进行加锁,锁定粒度大,开销小,加锁快,不会出现死锁,出现锁冲突的概率最大,并发性最低

这里没法说明那种锁最好,只有合适不合适

在行级锁中,可以分为两种类型

  • 共享锁
  • 排他锁

共享锁

共享锁又称为读锁,允许其他事务读取被锁定的对象,也可以在其上获取其他共享锁,但不能写入。

举个例子:

  • 事务T在数据A拥有共享锁,那么当前事务T对数据A可以读,但是不能修改。而且事务T2同样可以对数据A拥有共享锁,这样相当于在数据A上分别存在不同事务的共享锁
  • 数据A拥有了事务T的共享锁,那么就不能再拥有其他事务的排他锁

下面是关于共享锁的具体实现,关键代码:select .. from table lock in share mode

 -- 创建实例表
 create table tb_lock(
     id bigint primary key auto_increment,
     t_name varchar(20)
 ) engine=InnoDB;

开启两个窗口来测试:

session1session2
set autocommit=0;set autocommit=0;
select * from tb_lock where t_name = ‘zs’ lock in share mode; 
 select * from tb_lock where t_name = ‘zs’ lock in share mode;
 select * from tb_lock where t_name = ‘lsp’ lock in share mode;
update tb_lock set t_name = ‘lzs’ where t_name = ‘zs’; 
update tb_lock set t_name = ‘lsp111’ where t_name = ‘lsp’; 
 select * from tb_lock where t_name = ‘zs’;
commit; 

自动提交全部关闭,可以通过select @@autocommit;来查看

通过以上实验,我们总结:

  • 共享锁基于行锁处理,不同事务可以在同一条数据上获取共享锁
  • 如果多个事务在同一条数据上获取共享锁,当想要修改该条数据的时候,会出现阻塞状态。直到其他事务将锁释放,该能够继续修改

修改,删除,插入会默认对涉及到的数据加上排他锁

  • 单纯的select操作不会有任何影响,select不会加任何锁
  • 执行commit;自动释放锁

排它锁

又叫写锁。只允许获取锁的事务对数据进行操作【更新,删除】,其他事务对相同数据集只能进行读取,不能有跟新或者删除操作。而且也不能在相同数据集获取到共享锁。

没错,就是这么霸道

在MySQL中,想要基于排它锁实现行级锁,就需要对表中索引列加锁,否则的话,排它锁就属于表级锁

下面一一来展示,关键代码:select .. from XX for update

首先是有索引列状态

session1session2
set autocommit=0;set autocommit=0;
select * from tb_lock;select * from tb_lock;
select * from tb_lock where id = 1 for update; 
 select * from tb_lock where id = 1 for update;
select * from tb_lock where id = 2 for update; 
commit; 

通过以上实验,得到结论:

  • 对索引列进行加锁的锁定级别为行级锁,如上所示,当其他事务想要对相同的数据再次加锁的时候,就会进行到阻塞状态。并且如果等待时间过长,会出现如下异常:
 Lock wait timeout exceeded; try restarting transaction
  • 对不同行数据再次加排它锁,是没有任何问题的。
  • 对已经上锁的相同数据做修改和删除操作不需要多说,因为InnoDB默认会对其加入排它锁

下面是无索引列状态

session1session2
set autocommit=0;set autocommit=0;
select * from tb_lock;select * from tb_lock;
select * from tb_lock where t_name = ‘ls’ for update; 
 select * from tb_lock where t_name = ‘ls’ for update;
commit 

通过以上实验,得到结论:

  • 对非索引列其中一条数据加入了排它锁后,在其他事务中对不同数据再次加入排它锁,进入了阻塞状态
  • 说明当加锁列属于非索引时,InnoDB会对整个表进行上锁,进入到表级锁

接下来我们来看看MyISAM的方式

MyISAM

MyISAM属于表级锁,被用来防止任何其他事务访问表的锁。

其中表锁又分为两种形式

  • 表共享读锁: READ
  • 表独占写锁: WRITE

这里我们要注意:表级锁只能防止其他会话进行不适当的读取或写入。

  • 持有WRITE 锁的会话可以执行表级操作,比如DELETE或者TRUNCATE
  • 持有会话READ锁,不能够执行DELETE或者TRUNCATE操作

表共享读锁

不管是READ还是WRITE,都是通过lock table 来获取表锁的,而READ锁拥有如下特性:

  • 持有锁的会话可以读取表,但是不能进行写入操作
  • 多个会话可以同时获取READ表的锁,而其他会话可以在不显式获取READ锁的情况下读取该表:也就是说直接通过select来操作

那么,接下来我们来看实际操作,关键代码:lock tables table_name read

 create table tb_lock_isam(
     id bigint primary key auto_increment,
     t_name varchar(20)
 ) engine=MyISAM;

开启两个窗口来进行操作:

session1session2
set autocommit=0;set autocommit=0;
LOCK TABLES tb_lock_isam READ; 
select * from tb_lock_isam; 
select * from tb_lock; 
 select * from tb_lock_isam;
 LOCK TABLES tb_lock_isam READ;
 select * from tb_lock_isam;
 select * from tb_lock;
unlock tables;insert into tb_lock_isam(t_name) values(‘ll’);
  

通过以上实战,验证以下结论:

  • 在当前事务下,获取到读锁,直接查询锁定表是没有问题的,但是如果想要读取其他表下的数据,那么就会出现以下异常:因为其他表并没有LOCK在其中
 Table 'tb_lock' was not locked with LOCK TABLES
  • 事务A获取到读锁之后,在其他事务中是可以正常读取的,并且也可以再次获取读锁。
  • 在读锁中如果想要进行插入操作是不会成功的,出现以下异常:
 Table 'tb_lock_isam' was locked with a READ lock and can't be updated
  • 当前表获取到读锁之后,在当前表没有释放读锁之前,再获取写锁会一直进入到阻塞状态。
  • 可以通过非加锁方式来读取数据,但是要注意:一定是在不同的事务下

表独占写锁

WRITE锁的特性和排它锁的特性非常相似,都特别霸道:

  • 持有锁的会话可以读写表
  • 只有持有锁的会话才能访问该表。在释放锁之前,没有其他会话可以访问它
  • 其他会话对表的锁请求在WRITE持有锁时被阻塞

还是通过具体实战来进行演示效果,关键代码:lock tables table_name write

session1session2
select * from tb_lock_isam;select * from tb_lock_isam;
lock table tb_lock_isam write; 
select * from tb_lock_isam; 
insert into tb_lock_isam(t_name) values(‘66’); 
 select * from tb_lock_isam;
unlock tables; 

通过以上实战,验证以下结论:

  • 当事务获取到当前表的WRITE锁的时候,在当前事务下可以对获取锁的表进行任何操作,其他事务无法对表进行任意操作。
  • 在不同事务下不会对其他表的操作有影响
  • 在当前事务获取到WRITE锁之后,只能在当前事务下操作获取锁的表,无法操作其他表,否则会出现以下异常
  Table 'tb_index' was not locked with LOCK TABLES'

注意

MyISAM在执行查询语句之前,会自动给涉及的所有表加读锁,在执行更新操作前,会自动给涉及的表加写锁,这个过程并不需要用户干预,因此用户一般不需要使用命令来显式加锁

分布式锁实现

既然已经了解到了MySQL锁相关内容,那么我们就来看看如何实现,首先我们需要创建一张数据表

当然,只需要初始化创建一次

 create table if not exists fud_distribute_lock(
     id bigint unsigned primary key auto_increment,
     biz varchar(50) comment '业务Key'
     unique(biz)
 ) engine=innodb;

在其中,biz是为了区分不同的业务,也可以理解为资源隔离,并且对biz设置唯一索引,也能够防止其锁级别变为表级锁

既然for udpate就是加锁成功,事务提交就自动释放锁,那么这个事情就非常好办了:

 // 省略了构造方法,需要传入DataSource和biz
 ​
 private static final String SELECT_SQL = 
     "SELECT * FROM fud_distribute_lock WHERE `biz` = ? for update";
 private static final String INSERT_SQL = 
     "INSERT INTO fud_distribute_lock(`biz`) values(?)";
 ​
 // 从构造方法中传入
 private final DataSource source;
 private Connection connection;
 ​
 public void lock() {
     PreparedStatement psmt = null;
     ResultSet rs = null;
 ​
     try {
         // while(true); 
         for (; ; ) {
             connection = this.source.getConnection();
             // 关闭自动提交事务
             connection.setAutoCommit(false);
             
             psmt = connection.prepareStatement(SELECT_SQL);
             psmt.setString(1, biz);
             rs = psmt.executeQuery();
             if (rs.next()) {
                 return;
             }
             connection.commit();
             close(connection, psmt, rs);
             // 如果没有相关查询,需要插入
             Connection updConnection = this.source.getConnection();
             PreparedStatement insertStatement = null;
             try {
                 insertStatement = updConnection.prepareStatement(INSERT_SQL);
                 insertStatement.setString(1, biz);
                 if (insertStatement.executeUpdate() == 1) {
                     LOGGER.info("创建锁记录成功");
                 }
             } catch (Exception e) {
                 LOGGER.error("创建锁记录异常:{}", e.getMessage());
             } finally {
                 close(insertStatement, updConnection);
             }
         }
     } catch (Exception e) {
         LOGGER.error("lock异常信息:{}", e.getMessage());
         throw new BusException(e);
     } finally {
         close(psmt, rs);
     }
 }
 ​
 public void unlock() {
     try {
         // 事务提交之后自动解锁
         connection.commit();
         close(connection);
     } catch (Exception e) {
         LOGGER.error("unlock异常信息:{}", e.getMessage());
         throw new BusException(e);
     }
 }
 ​
 public void close(AutoCloseable... closeables) {
     Arrays.stream(closeables).forEach(closeable -> {
         if (null != closeable) {
             try {
                 closeable.close();
             } catch (Exception e) {
                 LOGGER.error("close关闭异常:{}", e.getMessage());
             }
         }
     });
 }

难点:为什么需要for(;

如果一个请求是第一次进来的,比如biz=order,在这个表中是不会存储order这条记录,那么select ...for update就不会生效,所以就需要先将order插入到表记录中,也就是执行insert操作。

insert执行成功之后,记录select...for update,这样获取锁才能生效

总结

基于MySQL的分布式锁在实际开发过程中很少使用,但是我们还是要有一个思路在。那么本节针对MySQL的分布式锁实现到这里就结束了,掌握了MySQL的基础锁,那么就会非常简单了。

Copyright 2022 版权所有 软件发布 访问手机版

声明:所有软件和文章来自软件开发商或者作者 如有异议 请与本站联系 联系我们