图的对象化描述搜索图算法 java图搜索算法之图的对象化描述示例详解

软件发布|下载排行|最新软件

当前位置:首页IT学院IT技术

图的对象化描述搜索图算法 java图搜索算法之图的对象化描述示例详解

爱敲代码的小黄   2021-11-09 我要评论
想了解java图搜索算法之图的对象化描述示例详解的相关内容吗,爱敲代码的小黄在本文为您仔细讲解图的对象化描述搜索图算法的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:java图搜索算法,java图的对象化描述搜索算法,下面大家一起来学习吧。

你好,我是小黄,一名独角兽企业的Java开发工程师。
校招收获数十个offer,年薪均20W~40W。
感谢茫茫人海中我们能够相遇,
俗话说:当你的才华和能力,不足以支撑你的梦想的时候,请静下心来学习,
希望优秀的你可以和我一起学习,一起努力,实现属于自己的梦想。

一、前言

对于图来说,我一直以来都似懂非懂

懂的是图的含义,不懂的是图具体的实现

对于当前各大厂面试的图题,不外乎以下几点:

深度优先搜索、广度优先搜索:DFS、BFS最小生成树:Kruskal、Prim最短路径:Dijkstra、Dijkstra加强堆版拓扑排序:TopologicalSort

这几个算法其实听起来不太难懂,但真正写代码的时候会发现一个事情,傻逼图的边和点太难描述,导致我们写着写着人就没了,绕进去出不来了

本篇系列文章,将从对象的角度来描述一个图的产生,并用最简单的思路去介绍上述所有算法,让我们走进本篇文章吧。

二、什么是图

图是我们现实生活中连接关系的抽象,例如朋友圈、微博的关注关系。

简单抽象如下图所示:

在这里插入图片描述

对于图来说,分为有向图和无向图,如下图所示:

在这里插入图片描述

我们可以看出来,有向图代表只能从一个顶点到达另一个顶点,而无向图代表两个顶点之间可以相互到达。

图1中,V4到达V1,而V1无法到达V4

图2中,V4到达V1,V1也可以到达V4

当然,还有一种图的形式,叫做:带权图(主要用来做一些路程、路费的计算),如下图所示:

在这里插入图片描述

三、怎么存储一个图的结构

我们在刷题的时候,题目给我们的样例经常是这种的:743. 网络延迟时间

在这里插入图片描述

题目会给我们一个二维的矩阵,一行矩阵有三个数字,分别是:起始点、终止点、权重

如何将这个二维的矩阵表示出来,成为了我们在做图题目中比较困难的一件事

本文将直接使用一种特殊的表示形式来解决这个难题,我们先从最基本的 邻接矩阵 和 邻接表 表示开始

1、邻接矩阵

邻接矩阵是表示图中顶点之间相邻关系的矩阵。

对于无向图的邻接矩阵:对称矩阵:int[][]

在这里插入图片描述

有向图的邻接矩阵:各行之和是出度,各列之和是入度

在这里插入图片描述

带权图的邻接矩阵

在这里插入图片描述

2、邻接表

邻接表是一种链式存储结构,类似于链表数组。

无向图的邻接表:HashMap<Integer, ArrayList<Integer>>

在这里插入图片描述

3、图对象化表示

我们思考,上述两个方法对于图的表示形象嘛?

虽然有的题目在用矩阵表示的时候,做起来很舒服,但我们想一想,当我们求最小生成树时,利用边的连接解锁点时,用矩阵会
不会感觉很抽象难懂,所示,我们要自定义一个图的表示方法,来增强我们对图的理解

对于图来说,我们想一想主要包括什么?

图是由点和边组成的一个结构,也就是我们想要勾画一个图,必须有:点、边

点的描述:

点的值:int value

邻接的点:ArrayList<Node> nexts

邻接的边:ArrayList<Edge> edges

入度:int in

出度:int out

public class Node {
    public int value;
    public int in;
    public int out;
    public ArrayList<Node> nexts;
    public ArrayList<Edge> edges;

    public Node(int value) {
        this.value = value;
        in = 0;
        out = 0;
        nexts = new ArrayList<>();
        edges = new ArrayList<>();
    }
}

边的描述:

来自哪里:Node from去往哪里:Node to边的权重:int weight

public class Edge {
    Node from;
    Node to;
    int weight;

    public Edge(Node from, Node to, int weight) {
        this.from = from;
        this.to = to;
        this.weight = weight;
    }
}

图的描述:

多个点的集合:HashMap<Integer, Node> nodes多个边的集合:Set<Edge> edges

public class Graph {
    public HashMap<Integer, Node> nodes;
    public Set<Edge> edges;

    public Graph() {
        nodes = new HashMap<>();
        edges = new HashSet<>();
    }
}

这里可能有疑问了,你这样写虽然形象,但是怎么进行转化呢?

别急,下面我们就进行转化。

public static Graph createGraph(int[][] matrix) {
        // 初始化一个图
        Graph graph = new Graph();

        for (int[] arr : matrix) {
            // 来的点
            int from = arr[0];
            // 去的点
            int to = arr[1];
            // 权重
            int value = arr[2];

            // 生成相对应的点
            Node fromNode = new Node(from);
            Node toNode = new Node(to);

            // 查看当前有没有这个点的信息
            if (!graph.nodes.containsKey(from)) {
                graph.nodes.put(from, fromNode);
            }
            if (!graph.nodes.containsKey(to)) {
                graph.nodes.put(to, toNode);
            }

            // 生成一个边(这里的边是有向边)
            Edge edge = new Edge(fromNode, toNode, value);

            // 点里面加入边
            graph.nodes.get(from).edges.add(edge);

            //  点里面加入下一个点
            graph.nodes.get(from).nexts.add(toNode);

            // 点里面加入入度和出度
            graph.nodes.get(from).out++;
            graph.nodes.get(to).in++;

            // 图里面加入边
            graph.edges.add(edge);

        }
        return graph;
    }

当我们转化完的时候,进行测试:

public static void main(String[] args) {
        int[][] arr = new int[][]{{2, 1, 1}, {2, 3, 1}, {3, 4, 1}};
        Graph graph = createGraph(arr);
        // 从2开始的边有哪些
        List<Edge> edgeList = graph.nodes.get(2).edges;
        for (Edge edge : edgeList) {
            System.out.println("从" + edge.from.value + "---->" + edge.to.value + "权值为" + edge.weight);
        }
    }

最终结果:

从2---->1权值为1
从2---->3权值为1

以后我们在做题的时候,都可以保存此转化代码,直接进行调用即可

简单形象的描绘了我们的图

四、图的作用

图经常用在以下地方:

  • 深度优先搜索、广度优先搜索:DFS、BFS
  • 最小生成树:Kruskal、Prim
  • 最短路径:Dijkstra、Dijkstra加强堆版
  • 拓扑排序:TopologicalSort

之后的章节会慢慢的讲解以上所有的应用

在这里插入图片描述

Copyright 2022 版权所有 软件发布 访问手机版

声明:所有软件和文章来自软件开发商或者作者 如有异议 请与本站联系 联系我们